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Free convective heat transfer of a fluid in horizontal channels and above a horizontal surface is theoreti-
cally analyzed. The interaction of the fluid with the channel walls may be divided into two parts: form-
ation of vortex flow cells, and heat transfer in the induced flow over the walls.

A great deal of experimental and theoretical work has been devoted to investigating heat transfer processes in
free convection, but as yet no theory exists to determine the degree of heat transfer to horizontal channels and surfaces.
Heat transfer conditions are analyzed in references [1, 2, 3] near the point of instability only. The free motion of a
fluid at large Ra values is examined in references [4,5], but the authors determine only average temperature profiles,
and the results obtained are not confirmed by the experimental data of [6, 7]. Known analytical solutions [8, 9], based
on boundary layer theory, are applicable only for vertical heating surfaces in a fluid of infinite extent,

An account is given below of a theory of free convection heat transfer in horizontal channels and over horizon-
tal surfaces based on the following experimental facts:

1. The flow of a fluid in horizontal channels in the range of Ra numbers from 1700 to 45 000 has a pronounced
cellular structure {10, 111,

2. When the channel width increases to infinity, the cellular structure of the fluid is maintained in the immed-
iate vicinity of the heat transfer surface [6]

3. In the intermediate range, when Ra > 45 000, the data of [6] show that the cellular structure of the fluid is
maintained on the lower heat transfer surface.

Possible fluid structures are shown schematically in Fig. 1.

We shall consider that the intensity of heat transfer under LLLLLLLLLLLLLLLLLLL s
the conditions considered here depends mainly on the velocity of z
the fluid in the cellular layer existing near the solid surface. ~| ot
The problem may then be reduced to the calculation of the e
thermal boundary layer developing on the solid surface as a re-
sult of the interaction of the paired vortices forming the cellu- TIITTITT 77 7T TTT777777: by
lar structure. The circulation velocity of the fluid in the cells '\ - Py e
is determined primarily by bouyancy forces, which do not have = N N st
a notable influence on the law of the thermal boundary layer ’ - -~
at the wall. Thus, the problem of free convection under the ’D Q O C
conditions considered here may be divided into two parts:
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1. Determination of the intensity of circulation of the
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fluid in the cells. )
2. Calculation of the thermal boundary layer in the in- A 1 i
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duced fluid flow close to the heat transfer surface. — = . = . —..n e
Let us examine the flow of a fluid with constant physical W Q Q (
properties in a plane channel in the region Ra < 45 000, Figure - ¢
2 shows the flow patterns under these conditions. The vertical TTIITTFITE7 7777777777,
velocity component in the vortex cylinder in the horizontal
section at the moment of onset of instability is determined, Fig. 1. Fluid flow patterns.
according to [12], by
v, =v(y)cos(n/l)x. (n
Let us assume that a similar velocity distribution holds even for developed vortex flow at y = 1/2:
Uy = — Uy cos{m/l) x. (2)

We find the velocity distribution in the other sections from the conditions of potential flow in the cell (Fig. 2b}.



The general solution for the stream function has the form
P = 2/1” shﬁ—LZy sini;l—x. (3

We find the coefficients of the series from the following relation:
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where
F(xX) = ¢ = -ziilsinﬁli
Therefore,

Al = 0435 Ugl/ﬂ; Az = A3 = Ay = 0.
The horizontal velocity near the surface of the plate is
= (0P/0y)y—o = 0.435 yp sinm x/L. (5)

Thus, the first part of our problem has been solved correct
to within the as yet unknown value of the maximum velocity v, in
the vortex. To determine this velocity, and also to solve the

[97977777777777774 /,,,,,,,, LLLLLLL, second part of the problem, we have the following set of equations:
momentum equation for the boundary layer that develops on
) ol the plate due to the induced fluid flow of velocity vy [13F
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’ 1 equation of the thermal boundary for the case At = const [13]
l,
Uiy heat transfer relation for a laminar boundary layer [13]:
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b =0 _JJ/ ¢:0 heat balance equation (Fig. 2a):
0 ¥0 T Q=—Qy (10)
equation of equilibrium of forces acting on the liquid circul-
Fig. 2. Scheme for calculating potential flow ating in the cells.

flow of fluid in cell and velocity distribution in
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the horizontal section (a) and other sections (b). From (6) and (), with the boundary condition (Re™")x=

and §%/8** = 2.5, we have

?

Re™ — 0,663 (lcvo f(= X)) (11

where ¢ = 0,435 and

f(rX)= (sinw X)~7 [0.546 X (T—Q)£ —ji—smnX)

— 0.125 (sin = X)" cos = X. — 0.146 (sin = X)° cos = X — 0.182(sinnX)3cosz] ,



From (11) and ('7) we obtain
Ty = Z (= X)p vy VI, (12)
where
Z (= X) = 0.586 (sin = X)¥/[f (= X)]'/ .

The values of function Z(mx) are respectively equal to 0; 0.565; 1.110; 1.230; 1,140; 0.895; 0.537; 0.201;
0.029; 0.001; 0 when X = 0; 0.1; 0.2; 0.3; 0,4; 0.5; 0.6; 0.7; 0.8; 0.9; 1.

For the mean value of the sheer stress at the wall due to one vortex cylinder we have
T, = 0.574pcvg* Vvl . (13)
The friction force at the wall is
W= 1,l=0574pc"v*VVI. (14)

From (8) and (9), with the boundary condition ( Re‘,“r*)x=0 = 0, we have:

o 0.4400‘)[ * \ e
Re: ”(W(I—COSWX)) . (15)

Substituting in (9), we obtain a formula for the average heat transfer coefficient
o =053 Pr"* Veoylv . (16)
The quantity of heat transmitted by the lower wall to the fluid is
Q= 0.530 I Pro4 (¢, — 1) V cvg/l v . (17

The quantity of heat transmitted by the flnid to the upper wall is

Qy = 0.53 [ty — (fo + ALY NI Pro4 1/ co/l v, (18)
where
At =Qle, vyl (19)
1/2 .
U= (2/]) j vecos (n x/l)d x = 0.6370,.
Y
Therefore,

fo=(t; +1,—AY)/2. (20)
The buoyancy force acting on the fluid circulating in a cell is
Wy = At Byl¥2, (20

where ZZ/ 2 is the volume in which the buoyancy flow takes place.

A closed set of equations results, which may be solved by the method of successive approximations. Since At® <«
« tj +1g, we shall take At' = 0 as the first approximation in (20). Equating the friction forces at the wall (W = 211)
and the buoyancy forces, we have

vp = (0.364 At B gl/cPr0-6)/z, (29

where

At:tl—tg.



We determine a value of Q from (17) and of At' from (19), and obtain a new value of ‘to_from (20). From this value
of ty we finally obtain an expression for Nu for free convection of a fluid in narrow horizental channels:

Nu=0.17(1 + 0.58/Ra0-25 Pro-2) Rat-2, . (23)

The problem of free convection from a horizontal plate in a fluid of infinite extent may be similarly solved. In
this case a thin vortex layer forms near the heat transfer surface, depending on the ratio of viscous to buoyancy forces.
From dimensional considerations the thickness of the layer is given by

| = (avRa,/AtBE)"%, (29
where
At =1 —lo.

According to [6], Racr =10%4-2.5 - 10*, Solving the set of equations (6)-(10) with the conditions tg = te; 03 =
= a3 W =Wy W=Tyl, we have:

Uo = (1.45 At 8 gl/cPr0-6)1/2 (25)
and
@ =047 Rage *® (Atpgra)s . (26)
When Rag, = 2.5 « 10, we obtain
Nu = 0.2 Ra’. (20

On the basis of parametric correlation of experimental data on heat transfer in free convection from a horizontal
plate the following formula {14]has been proposed:

Nu = 0.18 Ra. (28)

Thus, quite satisfactory agreement is obtained between the theoretical formula and experimental data.

On the, basis of this theory we can obtain, in the first approximation, an analytical expression for the heat trans-
fer in free convection in'a horizontal channel in the region Ra > 45 000. In this case vortex flow similar to that which
occurs on a horizontal plate is observed at the lower wall. The picture of the flow near the upper wall is not sufficiently
clear, but if we make the assumption that oy & oy, and carry out a calculation similar to that above, we obtain the
formula

Nu = 0.08 Ra'/s, (29
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Fig. 8. Comparison of theory and experiment. Experiments of [15}
1) water; 2, 3) silicone oil AK-3, AK-350 (Pr =~ 4000); 4) heptane;
5) ethylene glycol. Experiments of {16]: 6) water; I) according to
(23) (Pr = 0,73); II) according to (29); III) according to Nakagawa's
theory [3]; IV) region of experimental points of [15].

In Fig. 3 existing experimental data are compared with values of the heat transfer in free convection in horizontal
channels calculated according to our theory, It can be seen from the graph that there is qualitative agreement in the
region Ra < 45 000, and good quantitative agreement in the region Ra > 45 000.



NOTATION

ve—~maximum value of velocity in middle section of cellular layer; ¢ —stream function; I—thickness of cellular
momentum thickness; v—kinematic viscosity; §*—displacement thickness; §**—momentum thickness; 8% —energy
loss thickness; Rej = vyl /v—Reynolds number, based on velocity vy and characteristic dimension; X = x/I—relative
distance; cf —friction coefficient; St~ Stanton number; Rei'i:” = vxéi}*/v—Reynolds number, based on energy loss thick-
ness; p—density; y—specific weight; A—thermal conductivity; B~coefficient of volume expansion; g—acceleration
due to gravity; or—thermal diffusivity; Rac;—Rayleigh number based on thickness of cellular layer and At = t 3 —teo;
to—average temperature in descending flow; At' —difference of average temperatures in the descending and ascending
flows; vy—velocity at y = 1/2; vy—vertical velocity component. Subscripts: "cr” —critical, "w"—wall, 2~vertical
component; x—horizontal component.
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