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Free convective heat  transfer of a fluid in horizontal  channels and above a horizontal  surface is theore t i -  

ca l ly  analyzed.  The interact ion of the fluid with the channel  walls may  be divided into two parts: form- 
at ion of vortex flow cel ls ,  and heat  transfer in the induced flow over the walls. 

A great  dea l  of exper imenta l  and theoret ica l  work has been devoted to investigating heat  transfer processes in 
free convect ion,  but as yet  no theory exists to determine the degree of heat  transfer to horizontal  channels and surfaces. 
Heat transfer conditions are analyzed in references [1, 2, S] near the point of instabi l i ty  only.  The free motion of a 

fluid at large Ra values is examined in references [4, 5 ], but the authors determine only average temperature profiles,  
and the results obtained are not confirmed by the exper imenta l  data  of [6, 7]. Known analy t ica l  solutions [8, 9], based 

on boundary layer theory, are appl icable  only for ver t ica l  heat ing surfaces in a fluid of infinite extent .  

An account is given below of a theory of free convection heat  transfer in horizontal  channels and over hor izon-  
ta l  surfaces based on the following exper imenta l  facts: 

1. The flow of a fluid in horizontal  channels in the range of  Ra numbers from 1700 to 45 000 has a pronounced 
cel lu lar  structure [10, 11]. 

2. When the channel  width increases to infinity,  the ce l lu lar  structure of the fluid is main ta ined  in the i m m e d -  
ia te  v ic in i ty  of the heat  transfer surface [6]. 

3. In the in termedia te  range, when Ra > 45 000, the data of [6] show that  the ce l lu lar  structure of the fluid is 
main ta ined  on the lower heat  transfer surface. 

Possible fluid structures are shown schemat ica l ly  in Fig. t .  

We shall consider that the intensity of heat  transfer under 
the conditions considered here depends mainly  on the ve loc i ty  of 
the fluid in the cel lular  layer  existing near the solid surface. 
The problem may  then be reduced to the ca lcula t ion  of the 

thermal  boundary layer developing on the solid surface as a r e -  
sult of the interact ion of the paired vortices forming the ce l l u -  
1at structure. The ci rculat ion ve loc i ty  of the fluid in the cel ls  
is determined pr imar i ly  by bouyancy forces, which do not have 
a notable influence on the law of the thermal  boundary layer 
at  the wal l .  Thus, the problem of free convect ion under the 
conditions considered here may  be divided into two parts: 

1. Determinat ion of the intensity of c irculat ion of the 
fluid in the cel ls .  

2. Calcula t ion of the thermal  boundary layer in the in-  
duced fluid flow dose  to the heat  transfer surface. 

Let us examine  the flow of a fluid with constant physical  
properties in a p lane charmel in the region Ra < 45 000. Figure 
2 shows the flow patterns under these conditions.  The ver t ica l  
veloci ty  component  in the vortex cyl inder  in the horizontal  
section at the moment  of onset of instabil i ty is determined,  
according to [12], by 

v~ = v (y )  c o s  (nil) x. 
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Fig. 1. Fluid flow patterns.  

(1) 

Let us assume that a s imilar  ve loc i ty  distribution holds even for developed vortex flow at y = l / 2 :  

vl  = - -  v0 Cos  (nil) x. (2) 

We find the ve loc i ty  distribution in the other sections from the conditions of potent ia l  flow in the ce l l  (Fig.  2b). 



The general solution for the stream function has the form 

= Z A , ,  sh =ny  sin =nx_ 
I 1 

rt== 1 

(3) 

where 

We find the coefficients of the series from the following relation: 

I 

A n sh = nl 2 "~ r. nx 
21 - I J - - t  

0 

d x ,  (4) 

Therefore, 

= x 
f (x) = ap, = " ' "  sin 

v, l 

A1 = 0.435 volh;  A2 = A3 =- A4 =- O. 

The horizontal velocity near the surface of the plate is 

v x = (0 @!Og)y=o = 0.435 v0 sin = x/l.  
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Fig. 2. Scheme for calculating potential flow 
flow of fluid in cell and velocity distribution in 
the horizontal section (a) and other sections (b). 

(5) 

Thus, the first part of our problem has been solved correct 

to within the as yet unknown value of the maximum velocity v0 in 

the vortex. To determine this velocity, and also to solve the 
second part of the problem, we have the following set of equations: 

momentum equation for the boundary layer that develops on 
the plate due to the induced fluid flow of velocity v x [13]: 

t i r e * *  + 1 q - -  - = R e l  ; (6) 
d X  ;:."* v,: d X  

law of  friction for a laminar boundary layer [13]: 

c~/2 = 0.22/Re**;  (7) 

equation of the thermal boundary for the ease At = const [13]: 

d Re*,*/dX = Ret St; (8) 

heat transfer relation for a laminar boundary layer [13]: 

St --- 0.22/Re~* Pr  1,2 ; (9) 

heat balance equation (Fig. 2a): 

G = - -  G ;  (10) 

equation of equilibrium of forces acting on the liquid circul-  
ating in the cells. 

From (6) and (7), with the boundary condition (Re**)x= 0 = 0 
and 6*/6** = 2.5,  we have 

R e * * =  0.663 Icvo f ( = X )  , (11) 

where c = 0.485 and 

f(=X) = ( s in=  X)  -7 0.546 X 4 

- -  0 .125 ( s i n = X )  ~ c o s = X  - -  0 . 1 4 6 ( s i n = X ) S c o s = X  - -  O.182 (sin "a X)3 cos = X ]  . 



From (11) and (7) we obtain 

where 

The values of function Z0rx) 
0.029; 0.001; 0when  X =  0; 0.1;  0.2; 0.3; 0.4; 0.8; 0.6; 0.q; 0.8; 0.9; 1. 

(12) 

Z (v, X) = 0 .586 (sin ~ X)VI f  (~ X)l  v2 . 

are respect ively equal  to O; 0.565; 1,110; 1.280; 1,140; 0.895; 0.587; 0.201; 

where 

For the mean value of the sheer stress at the wall  due to one vortex cyl inder  we have 

- -  3 " 3 / 2  

-c w = 0.574pc/~Vo l /~-f l .  (13) 

The friction force at the wall  is 

IF = T-- w t = 0.574 9 c 3/2 vo h ] / - 7 .  

From (8) and (9), with the boundary condit ion 'Re**" t TJX=~ = 0, we have:  

R e ; * =  ( 0.44CVo_t (1"  c o s ~  X)] v~. 
\4 P r  1.2 ~ 

Substituting in (9), we obtain a formula for the average hea t  transfer coeff ic ient  

~ - =  0.53~ Pr  ~ V-cvo/1 '; 

The quantity of heat  transmitted by the lower wal l  to the fluid is 

QI = 0.53), l P r  ~ (t 1 - -  to) ]/-C~o//~ 

The quantity of hea t  t ransmitted by the fluid to the upper wall  is 

Q2 = 0.53 It2 - -  (to + A t ' ) ]  ), l P r  ~ 1 / CVo/l 4, 

A t' = Q (% y Vavl/2)-I , 

l/2 

Vav = (2/0  j' vo cos  (z:x/l) d x = 0 .637v0  
0 

Therefore,  

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

where 

A t  = t l - - t 2 .  

to = (h  + ts - -  A t ' )~2 .  (2o) 

The buoyancy force acting on the fluid circulat ing in a cel l  is 

W1 = A t' ~y P/2, (21) 

where 12/2 is the volume in which the buoyancy flow takes p lace .  

A closed set of equations results, which may  be solved by the method of successive approximations.  Since At'  << 

<< t l  + t2, we shall  take At '  = 0 as the first approximation in (20). Equating the friction forces at the wall  (W = 2"~l) 
and the buoyancy forces, we have 

v0 = (0.364 A t ~ gl/c P r  ~ ) 'h,  (22) 



We determine a value of O from (lq) and of At' from (19), and obtain a new value of to from (20). From this value 
of to we finally obtain an expression for Nu for free convection of a fluid in narrow horizontal channels: 

Nu = 0.17 (1 q- 0.58IRa ~ P r  ~ ) Ra ~ (23) 

The problem of free convection from a horizontal plate in a fluid of infinite extent may be similarly solved. In 
this case a thin vortex layer forms near the heat tramfer surfaee, depending on the ratio of viscous to buoyancy forces. 
From dimensional considerations the thickness of the layer is given by 

l --: (a ~ Racr/A t ~ g) v:,, 

where 

(9.4) 

At  = t a - - t = .  

According to [6], Racr = 104-2.5  �9 10  4 .  Solving the set of  equations ( 6 ) - ( 1 0 )  with the conditions to = t ~ ;  a i  -< 
-< c z 2 ; W = W 1 ; W = ' ~ w l ,  we have: 

Vo -- (1.45 A t ~ gl/cPr ~ )I/2 (25) 

and 

When Racr = 2.5 �9 104, we obtain 

, n - -0 .0835  
~. = 0.47 ~ t<a cr (A t ~ gh a) ~ .  ( 2 6 )  

Nu = 0.2 Ra ;'.'. (27) 

On the basis of parametric correlation of experimental data on heat transfer in free convection from a horizontal 
plate the following formula [14] has been proposed: 

N u  = 0 .18  Ra '/3. (28) 

Thus, quite satisfactory agreement is obtained between the theoretical formula and experimental data. 

On the, basis of this theory we can obtain, in the first approximation, an analytical expression for the heat trans- 
fer in free convection in a horizontal channel in the region Ra > 45 000. In this case vortex flow similar to that which 
occurs on a horizontal plate is observed at the lower wall. The picture of the flow near the upper wall is not sufficiently 
clear, but if we make the assumption that ~z ~ c~z, and carry out a calculation similar to that above, we obtain the 
formula 

Nu = 0.08 Ra va. (29) 
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Fig. 3. Comparison of theory and experiment. Experiments of [15)  
1) water; 2, 3) silicone oil AK-3, AK-350 (Pr ~ 4000); 4) heptane; 
5) ethylene glycol.  Experiments of [16]: 6) water; 1) according to 
(93) (Pr = 0.73); II) according to (29); III) according to Nakagawa's 
theory [3]; IV) region of experimental points of [15]. 

In Fig. 3 existing experimental data are compared with values of the heat transfer in free convection in horizontal 
channels calculated according to our theory. It can be seen from the graph that there is qualitative agreement in the 
region Ra < 45 000, and good quantitative agreement in the region Ra > 45 000. 



NOTATION 

v0--maximum value of velocity in middle section of cellular layer; C-s t ream function; / - thickness  of cellular 
layer; vx-hor izonta l  velocity component near plate surface; Re"* = Vx 8** /v -var iab le  Reynolds number based on 
momentum thickness; v - k i n e m a t i c  viscosity; ~*-displacement  thickness; ~**--momentum thickness; 6~*-energy  
loss thickness; Re/= Vxl /v-Reynolds  number, based on velocity v x and characteristic dimension; X -~ x / l - r e l a t i v e  
distance; c f - f r i c t i o n  coefficient; St-Stanton number; ReT* = Vx6~.*/v-Reynolds number, based on energy loss thick-  
ness; p-dens i ty ;  ?,-specific weight; k - t h e r m a l  conductivity; 13-coefficient of volume expansion; g - acce l e r a t i on  
due to gravity; a - t h e r m a l  diffusivity; Raer-Rayleigh number based on thickness of cellular layer and'2xt = t l - t ~ ;  
t 0 - a v e r a g e  temperature in descending flow; ZXt'-difference of average temperatures in the descending and ascending 
flows; v l - v e l o c i t y  at y = l/2; Vy-vert ieal  velocity component.  Subscripts: " c r ' - c r i t i c a l ,  " w ' - w a l l ,  2 -ve r t i ca !  
component; x -hor izonta l  component. 
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